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1. Let ~u = (−8, 10, 32). For t in R, let

At =

 3 −1 −1
0 t 2
−12 4 t

 .

(a) (5 points) Find det(At) as a function of t.

(b) (5 points) Letting t = 4, find the solution set of At~x = ~u.

(c) (5 points) For what values of t does At~x = ~u have: exactly one solution, no solution,
infinitely many solutions?
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2. (a) (5 points) The linear transformations S, T, U : R2 → R2 act on vectors as follows:

• S(~x) is the reflection of ~x about the line x+ y = 0;

• T (~x) is the result of rotating ~x counterclockwise with angle π/4;

• U(~x) is the projection of ~x into the y axis.

Find the matrix of the transformation R(~x) = U(T (S(~x))).

(b) (6 points) Determine the set

A = {(x, y) in R2 such that R(x, y) = (0, 1)}.

Draw a graph sketching A and the sets

B = {S(x, y) : (x, y) belongs to A},
C = {T (S(x, y)) : (x, y) belongs to A}.
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3. The trace of a square matrix A, denoted trace(A), is the sum of the entries in the diagonal of
A. The trace is known to have the following property: if A and B are similar matrices, then
they have the same trace.

(a) (6 points) Verify that this property indeed holds true for the matrices A and B = PAP−1,
where

A =

 1 2 3
−1 0 4
9 8 7

 , P =

1 0 −1
0 2 2
1 1 1

 .

(b) (5 points) Assume Q is a 3× 3 diagonalizable matrix with eigenvalues 1, 2 and 3. What
is the trace of Q?
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4. (10 points) Find the solution of the linear differential equation

~x′(t) =

5 0 6
0 2 0
3 0 2

 ~x(t)

with the initial condition ~x(0) = (1, 1,−1).
Hint. When looking for eigenvalues, remember that a determinant can be found by cofactor
expansion across any row or column we choose.
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5. Consider the function
f(x, y, z) = x3yz − yz

x2 + 1
.

(a) (5 points) Find ∇f(x, y, z).

(b) (5 points) Find the directional derivative of f at the point (x, y, z) = (2, 0, 3) and in the
direction ~u = 1√

6
(1, 2,−1).

(c) (5 points) Find the equation of the tangent plane to the level surface of f at the point
(x, y, z) = (2, 0, 3).
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6. (a) (7 points) Assume m > 0 and f : Rn → R is a function satisfying

f(t~x) = tm · f(~x) for all t ≥ 0, ~x in Rn.

Show that
∇f(~x) · ~x = mf(~x) for all ~x in Rn.

Hint. For fixed ~x in Rn, define g(t) = f(t~x) and compute g′(1).

(b) (7 points) Let f : R→ R and g : R2 → R be differentiable functions. Assume that

f(5) = 2, f ′(5) = −3, ∇g(x, y) =

(
− y2

(x+ 1)2
,

2y

x+ 1

)
.

For h(t) = g(f(t), 1/f(t)), find h′(5).
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7. (a) (7 points) Sketch the region of integration and invert the order of integration:∫ 4

2

∫ (x−2)3

0
f(x, y) dydx.

(b) (7 points) Evaluate the integral:∫ √π
0

∫ √π
y

sin(x2) dxdy.


